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Abstract
This paper presents Soter, a fully-automatic program analyser and
verifier for Erlang modules. The fragment of Erlang accepted by
Soter includes the higher-order functional constructs and all the
key features of actor concurrency, namely, dynamic and possibly
unbounded spawning of processes and asynchronous message pass-
ing. Soter uses a combination of static analysis and infinite-state
model checking to verify safety properties specified by the user.
Given an Erlang module and a set of properties, Soter first extracts
an abstract (approximate but sound) model in the form of an ac-
tor communicating system (ACS), and then checks if the properties
are satisfied using a Petri net coverability checker, BFC. To our
knowledge, Soter is the first fully-automatic, infinite-state model
checker for a large fragment of Erlang. We find that in practice our
abstraction technique is accurate enough to verify an interesting
range of safety properties such as mutual-exclusion and bounded-
ness of mailboxes. Though the ACS coverability problem is EX-
PSPACE-complete, Soter can analyse these problems surprisingly
efficiently.

1. Introduction
This paper presents Soter, a tool that automatically verifies safety
properties of concurrent Erlang programs, based on the framework
of [4]. Erlang is an open-sourced language with support for higher-
order functions, concurrency, communication, distribution, fault
tolerance, on-the-fly code reloading and multiple platforms [2]. The
sequential part of Erlang is a higher order, dynamically typed, call-
by-value functional language with pattern-matching algebraic data
types. Following the actor model [7], a concurrent Erlang compu-
tation consists of a dynamic network of processes that communi-
cate by asynchronous message passing. Each process has a unique
process identifier (pid), and is equipped with an unbounded mail-
box. Message send is non-blocking. Retrieval of messages from
the mailbox is not FIFO but First-In-First-Firable-Out (FIFFO) via
pattern-matching. A process may block while waiting for a message
that matches a certain pattern to arrive in its mailbox. Thanks to a
highly efficient runtime system, Erlang is a natural fit for program-
ming multicore CPUs, networked servers, distributed databases,
GUIs, and monitoring, control and testing tools. For an introduc-
tion to Erlang, see Armstrong’s CACM article [1].

Safety Verification by Static Analysis and Model Checking
The challenge of verifying Erlang programs is that one must reason
about the asynchronous communication of an unbounded set of
messages, across an unbounded set of Turing-powerful, higher-
order processes. The inherent complexity of the verification task
can be seen from several diverse sources of infinity in the state
space.

(∞ 1) Function definitions are not necessarily tail-recursive, so a
call-stack is needed.

(∞ 2) Higher-order functions are first-class values; closures can
be passed as parameters or returned.

(∞ 3) Data domains, and hence the message space, are un-
bounded: functions may return, and variables may be
bound to, terms of an arbitrary size.

(∞ 4) An unbounded number of processes can be spawned dy-
namically.

(∞ 5) Mailboxes have unbounded capacity.

This motivates our model checking approach: we automatically
extract an abstract model that simulates the semantics of the pro-
gram by construction, then we use decision procedures on the ab-
stract model to prove safety properties.

Our abstract model, called Actor Communicating System, is
highly expressive: it can model dynamic spawning and unbounded
mailboxes. An ACS is defined by a finite set of rules but it is
infinite-state i.e. its dynamic semantics includes traces that go
through infinitely many different configurations. It follows that
one cannot establish reachability by exploring all the possible
runs. However ACS are equivalent to Petri nets for which model-
checking algorithms do exist. Our tool uses a Petri net coverability
checker called BFC [8]. ACS models are described in Section 2.

Overview of Soter
Soter is an experimental, prototype Haskell implementation of
the framework of [4]. It accepts a (concurrent) subset of the Er-
lang language: supported features include algebraic data-types with
pattern-matching, higher-order, spawning of new processes, asyn-
chronous communication. See Section 4 for the Erlang constructs
that are not currently supported by Soter.

As presented in Figure 1, Soter’s workflow has three phases.
In phase 1, the input Erlang module with correctness anno-

tations is compiled using the standard Erlang compiler erlc to
a module of Core Erlang — the official intermediate representa-
tion of Erlang. The code is then normalised in preparation for the
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Figure 1. Workflow of Soter
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Figure 2. Screenshot of Soter’s web interface

next phase. Correctness properties, expressible in various forms,
are specified by annotating the program source. The user can insert
assertions, or label program points and mailboxes and then state
constraints they must satisfy.

The main purpose of phase 2 is to soundly abstract sources of
infinity (∞ 1), (∞ 2) and (∞ 3). This is done as follows. A control-
flow based analysis is performed on the program, yielding a control
flow graph on which we bootstrap the generation of the ACS rules.
The analysis is parametric in D and M , the depth of the data and
message abstraction respectively. We abstract data by truncating
terms at the specified depth. By default D is set to zero, so calls
to the same function with different arguments are merged in the
abstract model; the runtime of the analysis is exponential in D. M
is by default set to D + P where P is the maximum depth of the
receive patterns of the program; using large values for M does not
incur the same slowdown as adjustingD. In future releases, we plan
to introduce parameters to tune the precision of the abstraction so
that users can control the context sensitivity of the analysis.

In phase 3, Soter generates a Petri net in the format of BFC [8],
which is a fast coverability checker for Petri nets with transfer arcs,
developed by Alexander Kaiser. For each property Soter needs to
prove, BFC is called internally with the BFC model and a query
representing the safety property as input.

Soter can be run in three modes: “analysis only” which pro-
duces the ACS, skipping phase 3; “verify assertions” which extracts
the properties from user annotations; “verify absence-of-errors”
which generates BFC queries asserting the absence of runtime ex-
ceptions. Currently not all the exceptions that the Erlang runtime
can throw are represented; the supported ones include sending a
message to a non-pid value, applying a function with the wrong
arity, and spawning a non-functional value. A notable omission is
pattern-matching failures which will be supported by the next re-
lease of Soter.

Soter is a practical implementation of a highly complex proce-
dure. Phases 1 and 2 are polytime in the size of the input program
[4]. Despite the EXPSPACE-completeness of the Petri net cover-
ability problem, phase 3 is surprisingly efficient; see the outcome
of the experiments in Table 1.

In addition to a command-line interface, we have built a web
interface for Soter at http://mjolnir.cs.ox.ac.uk/soter/.
The user interface allows easy input of Erlang programs. A library
of annotated example programs is available to be tried and modi-
fied. Soter presents the generated abstract model as a labelled graph
for easy visualisation, and reports in detail on the performance
and results of the verification. A screenshot of the web interface
is shown in Figure 2.

Related Work There are a few popular bug-finding tools for Er-
lang, notably Dyalizer [3, 9] which implements a variety of static
analyses. McErlang [5] and EtomCRL2 [6] are model checkers

1 main() -> Me = self(),
2 Gen = spawn(fun()->counter(2)end),
3 spawn(fun()->sieve(Gen,Me)end),
4 dump().
5

6 dump() -> receive X -> io:write(X), dump() end.
7

8 counter(N) ->
9 ?label_mail("counter_mail"),

10 receive {poke, From} ->
11 From!{ans, N}, counter(N+1)
12 end.
13

14 sieve(In, Out) ->
15 ?label_mail("sieve_mail"),
16 In!{poke, self()},
17 receive {ans,X} ->
18 Out!X,
19 F = spawn(fun()->
20 filter(divisible_by(X), In)
21 end),
22 sieve(F,Out)
23 end.
24

25 filter(Test, In) ->
26 ?label_mail("filter_mail"),
27 receive {poke, From} ->
28 filter(Test, In, From)
29 end.
30

31 filter(Test, In, Out) ->
32 In!{poke, self()},
33 receive {ans,Y} ->
34 case Test(Y) of
35 false -> Out!{ans,Y}, filter(Test, In);
36 true -> filter(Test, In, Out)
37 end
38 end.
39

40 -ifdef(SOTER).
41 divisible_by(X) ->
42 fun(Y) -> ?any_bool() end.
43 -else.
44 divisible_by(X) ->
45 fun(Y) -> case Y rem X of
46 0 -> true;
47 _ -> false
48 end
49 end.
50 -endif.

Figure 3. Eratosthenes’ Sieve, actor style

based on finite-state abstract models, the extraction of which is not
automatic. By comparison, Soter is fully automatic and employs
infinite-state verification techniques.

2. Actor Communicating Systems
The abstract model we extract from the input Erlang program is an
Actor Communicating System (ACS), which models the interaction
of an unbounded set of communicating processes. An ACS has a
finite set Q of control states, a finite set P of pid classes, a finite
set M of message kinds and a finite set of rules. An ACS rule has
the shape ι : q `−→ q′ which means that a process of pid class ι can
transition from state q to state q′ with (possible) communication
side effect `, of which there are four kinds:

(i) the process makes an internal transition,
(ii) it extracts and reads a message m from its mailbox,
(iii) it sends a message m to a process of pid class ι′ and
(iv) it spawns a process of pid class ι′.
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Figure 4. The ACS graph generated by Soter from the sieve example. The ι0 component represents the starting process which sets up the
counter agent (ι1) and the sieve agent (ι2) and then becomes the dump agent. During its execution, the sieve agent spawns new filter agents,
all represented by the ι3 component.

To help user visualise the model, we present an ACS as a collection
of label graphs (called components), each showing a pid-class,
where the vertices are the control states and the labelled edges are
the rules. An example of such a graphical presentation is shown in
Figure 4.

The semantics of ACS is as follows. Each control state is a
counter holding tokens; when a ι : q τ−→ q′ rule is executed a
token is extracted from q and transferred to q′; if q contains no
tokens the rule is not enabled. Spawn rules insert a new token in
the control state of the process to be created while making the
transition. Message passing is dealt with analogously: for each
component there is a counter for each message; these counters
keep track of the number of messages that have been sent to that
component so far, thus merging all the mailboxes of the processes
of the component. When a message is sent, a token is inserted in the
relevant counter. A receive rule can fire only when the counter for
the message to be extracted contains at least one token; when fired,
a token gets consumed. Note that the order of arrival of messages
is not recorded.

An ACS can be interpreted naturally as a vector addition system
(VAS), or equivalently Petri net. Recall that a VAS of dimension n
is given by a set of n-long vectors of integers regarded as transition
rules. A VAS defines a state transition graph whose states are just
n-long vectors of non-negative integers. There is a transition from
state v to state v′ just if v′ = v+r for some transition rule r. In this
paper, we are concerned with the EXPSPACE-complete decision
problem Coverability [10]: given a VAS, a start vector s and a target
non-negative vector t of the same dimension, is it possible to reach
some v that covers t (i.e. v ≥ t)? Note that LTL Model Checking is
also EXPSPACE-complete for VAS; Reachability is decidable but
its complexity is open.

A wide range of properties can be encoded as coverability
queries on the ACS. Examples include reachability of error states,
mutual exclusion, bounds on the number of enqueued messages in
a mailbox. Some of these correctness properties can be exploited by
optimising compilers. Bounds on mailboxes of a class of processes,
for example, allow the compiler to allocate a fixed number of
cells for that mailbox, resulting in programs that can be efficiently
garbage-collected.

Liveness properties such as deadlock freedom cannot currently
be checked by Soter because there are no efficient implementations
of LTL model checking for Petri nets. Should such implementations
become available, Soter can quickly take advantage of them.

3. Demo: A Concurrent Eratosthene’s Sieve
We illustrate the workings of Soter by an example. Figure 3 shows
an implementation of Eratosthenes’ sieve inspired by a NewSqueak

program by Rob Pike.1 The actor defined by counter provides
the sequence of natural numbers as responses to poke messages,
starting from 2; the dump actor prints everything it receives. The
sieve actor’s goal is to send all prime numbers in sequence as
messages to the dump actor; to do so it pokes its current In actor
waiting for a prime number. After forwarding the received prime
number, it creates (spawn) a new filter process, which becomes
its new In actor. The filter actor, when poked, queries its In actor
until a number satisfying Test is received and then it forwards it;
the test (an higher-order parameter) is initialized by sieve to be a
divisibility check that tests if the received number is divisible by
the last prime produced. The overall effect is a growing chain of
filter actors each filtering multiples of the primes produced so
far; at one end of the chain there is the counter, at the other the
sieve that forwards the results to dump.

Since Soter does not have native support for arithmetic opera-
tions, line 41 defines a stub to be used by Soter that returns true
or false non-deterministically, thus soundly approximating the real
definition based on division given in line 44.

The communication here is synchronous in spirit: whenever a
message is sent, the sender actor blocks waiting for a reply. To
check this is the case, we can verify the property that every mailbox
contains in fact at most one message at any time. To be able to
express this constraint we label the mailboxes we are interested in
with the ?label_mail() macro: the instructions in lines 9, 15 and
26 mark the mailbox of any process that may execute them with the
corresponding label.

Then we can insert the following lines at the beginning of the
module

-uncoverable("counter_mail >= 2").
-uncoverable("filter_mail >= 2").
-uncoverable("sieve_mail >= 2").

which state the property we want to prove. The -uncoverable
directive is ignored by the Erlang compiler but it is interpreted
by Soter as a property to be proved: all the states satisfying the
constraint are considered to be “bad states”. These inequalities
state that if the total number of messages in the labelled mailboxes
exceed the given bound, we are in a bad state.

Soter allows user-defined labels for program locations as well
with the macro ?label(); the inequalities in this case state that the
total number of processes executing the labelled instruction at the
same time must be less that the given bound.

When executed on the code in Figure 3, Soter will compute
the ACS in Figure 4; its semantics is a sound approximation of
the actual semantics of the program. A VAS description of it,

1 see “Concurrency/message passing Newsqueak”, http://video.
google.com/videoplay?docid=810232012617965344
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Example LOC PRP SAFE? ABSTR ACS SIZE TIME
D M Places Ratio Analysis Simpl BFC Total

reslockbeh 507 1 yes 0 2 40 4% 1.94 0.41 0.85 3.21
reslock 356 1 yes 0 2 40 10% 0.56 0.08 0.82 1.48
sieve 230 3 yes 0 2 47 19% 0.26 0.03 2.46 2.76
concdb 321 1 yes 0 2 67 12% 1.10 0.16 5.19 6.46
state factory 295 2 yes 0 1 22 4% 0.59 0.13 0.02 0.75
pipe 173 1 yes 0 0 18 8% 0.15 0.03 0.00 0.18
ring 211 1 yes 0 2 36 9% 0.55 0.07 0.25 0.88
parikh 101 1 yes 0 2 42 41% 0.05 0.01 0.07 0.13
unsafe send 49 1 no 0 1 10 38% 0.02 0.00 0.00 0.02
safe send 82 1 no* 0 1 33 36% 0.05 0.01 0.00 0.06
safe send 82 4 yes 1 2 82 34% 0.23 0.03 0.06 0.32
firewall 236 1 no* 0 2 35 10% 0.36 0.05 0.02 0.44
firewall 236 1 yes 1 3 74 10% 2.38 0.30 0.00 2.69
finite leader 555 1 no* 0 2 56 20% 0.35 0.03 0.01 0.40
finite leader 555 1 yes 1 3 97 23% 0.75 0.07 0.86 1.70
stutter 115 1 no* 0 0 15 19% 0.04 0.00 0.00 0.05
howait 187 1 no* 0 2 29 14% 0.19 0.02 0.00 0.22

Table 1. Soter Benchmarks. The number of lines of code refers to the compiled Core Erlang. The PRP column indicates the number of
properties which need to be proved. The columns D and M indicate the data and message abstraction depth respectively. In the “Safe?”
column, “no*” means that the program satisfies the properties but the verification was inconclusive; “no” means that the program is not safe
and Soter finds a genuine counterexample. “Places” is the number of places of the underlying Petri net after the simplification; “Ratio” is the
ratio of the number of places of the generated Petri net before and after the simplification. All times are in seconds.

incorporating the property, is then generated and fed to BFC to
check for the uncoverability of bad states; in this instance BFC is
successful in proving the program safe.

4. Experiments, Limitations and Extensions
Evaluation In Table 1 we summarise our experimental results.
Soter is a fully automatic tool. All our example programs are
higher-order and use dynamic (and unbounded) process creation
and non-trivial synchronisation. The properties checked fall into
three groups: mutual exclusion, unreachability of error states, and
bounds on mailboxes. The annotated example programs in Ta-
ble 1 can all be viewed and verified using Soter at the web inter-
face http://mjolnir.cs.ox.ac.uk/soter/. As indicated by
the experimental outcome, the abstractions employed by Soter are
sufficiently precise to prove safety for a wide variety of examples.
We observe that the ACS simplification is especially effective in
reducing the problem size. BFC implements an algorithm that is
EXPSPACE-hard in the ACS size. The experiments show there are
other factors such as transition structure that strongly influence the
runtime complexity of BFC, although it is not yet clear what these
parameters are. In conclusion, despite the worst-case exponential
complexity of the underlying algorithm, Soter is surprisingly ef-
ficient. We believe that the experimental outcome justifies further
development of the tool.

Limitations Features of Erlang currently unsupported by Soter
can be organised into three groups: (i) constructs such exceptions,
arithmetic primitives, built-in data types and the module system are
not difficult to integrate into the current framework; (ii) features
such as time-outs in receives, registered processes, input-output and
type guards could be supported by providing specific abstractions;
(iii) the monitor / link primitives and the multi-node semantics.
These features need to be supported explicitly by the abstract model
for them to be usefully approximated, and may require a major
extension of the theory. How to extend our framework to explicitly
and precisely model the last two groups of features is an interesting
research problem. Despite these limitations, it is usually possible
to adapt existing programs so that they are accepted by Soter:
often it is sufficient to provide “dummy” implementations of the

unsupported functions as it has been done in line 41 of the example
code in Figure 3.

In addition certain problem instances remain out of Soter’s
scope: if the proof of safety for a program requires accurate mod-
elling of the stack or precise sequencing information on the arrival
order of messages, then our abstractions are not suitable; further
our analysis assumes a closed program — the ability to analyse
and model-check open programs would enable a compositional ap-
proach which we expect would enhance Soter’s scalability.

Extensions and Future Directions We plan the following exten-
sions: (i) handle arbitrary Core Erlang programs (ii) formalise and
implement specific abstractions for time-outs and I/O (iii) develop
fine-tuned, flexible and refineable abstractions for data, mailboxes
and context-sensitivity, which would facilitate the construction of
a CEGAR loop (iv) exploit the decidability of LTL-properties for
ACS to enable Soter to prove liveness and other path properties.
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