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B2 × B B2 × Z

Def A graph is B2-triangle-free if it does
not contain a B2-triangle as induced
subgraph.
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Theorem

FO[R] for valence systems over MΓ is decidable

if and only if

Γ is a disjoint union of B2-triangle-free cliques.
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=⇒ FO[R] is decidable

Proof By showing automaticity of the reachability structure:
the step and reachability relations can be represented by
regular relations.

By (Khoussainov & Nerode 1995) the first-order theory of an
automatic structure is decidable.
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Case 2: contains a B2-triangle

Submonoid
B2 × B or B2 × Z

We can use
the submonoid B2 × N

We can prove undecidability by
using:

1. Two partially blind counters

2. A positive counter that we
can only increment

The proof is by showing that there is a fixed valence automaton AN on
which (N,+, ·) can be interpreted:

The Σ1 fragment of arithmetic with addition and multiplication is
undecidable (Matiyasevich 1993) =⇒ Σ2 over MΓ is undecidable.

Key trick:

• squaring is enough (a + b)2 = a2 + 2ab + b2

• implement weak squaring by using n2 =
∑n−1

i=0 2i + 1
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Thank you!
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