First-order logic with reachability for infinite-state systems

**Emanuele D'Osualdo**<sup>1</sup> Roland Meyer<sup>1</sup> Georg Zetzsche<sup>2</sup>

<sup>1</sup>University of Kaiserslautern <sup>2</sup>LSV, CNRS & ENS Cachan, Université Paris-Saclay

LICS 2016

# Goal: decidability frontier of FO[R]

# $S_A \models \varphi$

# Goal: decidability frontier of FO[R]

# $S_A \models \varphi$

Automaton:

finite control + storage

#### **Reachability structure:**

infinite graph of configurations +  $\rightarrow^*$ 



Automaton:

finite control + storage

#### **Reachability structure:**

infinite graph of configurations +  $\rightarrow^*$ 



Automaton: finite control + storage FO[R] first-order with reachability: middle ground between FO and MSO



infinite graph of configurations +  $\rightarrow^*$ 



# **Key Question**

Which features of storage mechanisms determine the decidability of FO[R]?

# **Key Question**

# Which features of storage mechanisms determine the decidability of FO[R]?

# **Main Result**

We found a simple condition characterising storage mechanisms with decidable FO[R].

#### Finite control + Unbounded storage



Finite control + Unbounded storage





#### Finite control + Unbounded storage



Storage = Monoid  $(M, \odot, \mathbf{1})$ 

- $m, r \in M$  set of storage contents and actions
- valid storage contents are the right-invertible elements:  $m \in \mathcal{R}_1(M) := \{x \in M \mid \exists r \in M : x \odot r = 1\}$
- 1 is empty storage and no-op action

#### Pushdown systems



 $\mathsf{Stack} = \mathsf{Monoid} \left( \left\{ a, b, \overline{a}, \overline{b} \right\}^*, \odot, \varepsilon \right)$ 

#### Pushdown systems



 $\mathsf{Stack} = \mathsf{Monoid} \, \left( \left\{ a, b, \overline{a}, \overline{b} \right\}^*, \odot, \varepsilon \right)$ 

#### Pushdown systems



$$(q_0, ba) \longrightarrow (q_1, b \not a \odot \not a bb)$$

 $\mathsf{Stack} = \mathsf{Monoid} \, \left( \left\{ a, b, \overline{a}, \overline{b} \right\}^*, \odot, \varepsilon \right)$ 

#### Pushdown systems



$$(q_0, ba) \longrightarrow (q_1, bbb)$$

 $\mathsf{Stack} = \mathsf{Monoid} \, \left( \left\{ a, b, \overline{a}, \overline{b} \right\}^*, \odot, \varepsilon \right)$ 

#### Pushdown systems



 $\mathsf{Stack} = \mathsf{Monoid} \left( \left\{ a, b, \overline{a}, \overline{b} \right\}^*, \odot, \varepsilon \right)$ 

#### Pushdown systems



Stack = Monoid  $(\{a, b, \overline{a}, \overline{b}\}^*, \odot, \varepsilon)$ 

#### Pushdown systems



Stack = Monoid  $(\{a, b, \overline{a}, \overline{b}\}^*, \odot, \varepsilon)$ 

- a, b are push actions,  $\overline{a}, \overline{b}$  are pop actions
- valid storage contents are the right-invertible elements:

$$\mathcal{R}_1(M) = \{a, b\}^*$$

#### Pushdown systems



Stack = Monoid  $(\{a, b, \overline{a}, \overline{b}\}^*, \odot, \varepsilon)$ 

- a, b are push actions,  $\overline{a}, \overline{b}$  are pop actions
- valid storage contents are the right-invertible elements:

$$\mathcal{R}_1(M) = \{a, b\}^*$$

•  $\varepsilon$  is empty storage and no-op action



• Graph 
$$\Gamma = (V, E)$$



• Graph 
$$\Gamma = (V, E)$$

• Generators 
$$X_{\Gamma} = \{a_v, \overline{a}_v \mid v \in V\}$$



• Graph 
$$\Gamma = (V, E)$$

• Generators 
$$X_{\Gamma} = \{a_v, \overline{a}_v \mid v \in V\}$$



- Graph  $\Gamma = (V, E)$
- Generators  $X_{\Gamma} = \{a_v, \bar{a}_v \mid v \in V\}$
- Monoid generated by  $\Gamma$  is  $\mathbb{M}\Gamma = X_{\Gamma}^*/_{\equiv}$



• Graph 
$$\Gamma = (V, E)$$

- Generators  $X_{\Gamma} = \{a_v, \bar{a}_v \mid v \in V\}$
- Monoid generated by  $\Gamma$  is  $\mathbb{M}\Gamma = X_{\Gamma}^*/_{\equiv}$



• Graph 
$$\Gamma = (V, E)$$

- Generators  $X_{\Gamma} = \{a_v, \bar{a}_v \mid v \in V\}$
- Monoid generated by  $\Gamma$  is  $\mathbb{M}\Gamma = X_{\Gamma}^*/_{\equiv}$



#### A partially blind counter: $\mathbb B$



aaa











#### A partially blind counter: $\mathbb B$



$$aa \not a \vec{a} \equiv aa$$
  
 $\not a \vec{a} \equiv \overline{a}$  not right-invertible!

Can only represent positive integers

A blind counter:  $\mathbb Z$ 



A blind counter:  $\mathbb Z$ 








 $aa \not a \not a \equiv aa$ 





 $a\overline{a}\equiv \varepsilon$ 

$$aa \not a \vec{p} \equiv aa$$
$$a \cdot \bar{a} \bar{a}$$



 $a\overline{a} \equiv \varepsilon$ 

 $aa \not a \vec{a} \equiv aa$  $\not a \vec{a} \equiv \vec{a} \qquad \text{now right-invertible!}$  $(\vec{a}a \equiv a\vec{a} \equiv \varepsilon)$ 



$$aa \not a \overrightarrow{a} \equiv aa$$
  
$$\not a \overrightarrow{a} \overrightarrow{a} \equiv \overrightarrow{a} \quad \text{now right-invertible!}$$
  
$$(\overrightarrow{a} a \equiv a \overrightarrow{a} \equiv \varepsilon)$$

Can also represent negative integers

A stack of two symbols:  $\mathbb{B} * \mathbb{B}$ 





### aaab



 $aaab \cdot \overline{b}\overline{a}b$ 



aaa¢₿∕



$$aaa \not\!\!\!/ \overline{\not\!\!\!/} \overline{a}b \equiv aaa \overline{a}b$$









abaaba



abaaab



aabaab



aaabab



aaaabb



 $aaaabb \cdot \overline{a}$ 



 $aaaabb\overline{a}$ 



 $aaaab\overline{a}b$ 



 $aaaa\overline{a}bb$ 



aaa¢**¤bb** 



aaabb



 $aaabb \cdot \overline{b}$ 

10



aaabb

Two partially blind counters:  $\mathbb{B}\times\mathbb{B}$ 



aaab





This works in general:  $M\Gamma_1 \times M\Gamma_2 = M\Gamma_{1,2}$ :









 $\mathsf{Stack}_{ab}\times\mathbb{Z}\times\mathbb{B}$




































## Graph monoids







 $\mathbb{B}*\mathbb{B}^3$ 



$$(\mathbb{B} * \mathbb{B}) \times \mathbb{B}^3$$







**Def** A graph is  $\mathbb{B}^2$ -triangle-free if it does not contain a  $\mathbb{B}^2$ -triangle as induced subgraph.

#### Theorem

# FO[R] for valence systems over $\mathbb{M}\Gamma$ is decidable if and only if

 $\Gamma$  is a disjoint union of  $\mathbb{B}^2\text{-triangle-free}$  cliques.



Allowed cliques:



Allowed cliques:





 $\mathbb{Z}$ 



Allowed cliques:







Allowed cliques:





 $\mathbb{Z} \times \mathbb{Z}^2$  $\mathbb{B} \times \mathbb{Z}^2$ 



Allowed cliques:





 $\mathbb{Z} \times \mathbb{Z}^3$  $\mathbb{B} \times \mathbb{Z}^3$ 



Allowed cliques:









#### **Operationally:** Stack with as entries either

- 2 partially blind counters, or
- a partially blind counter with *n* blind counters.





**Proof** By showing **automaticity of the reachability structure**: the step and reachability relations can be represented by *regular relations*.

By (Khoussainov & Nerode 1995) the first-order theory of an automatic structure is decidable.





We show automaticity for the reachability structures over:

- B × B a consequence of Presburger definability of reachability for 2-dimension VASS (Leroux & Sutre 2004)
- X Z<sup>n</sup> direct construction showing Presburger definability of reachability via Parikh images for 1-counter automata
- $M_0 * M_1$  when established for  $M_0$  and  $M_1$





We show automaticity for the reachability structures over:

- B × B a consequence of Presburger definability of reachability for 2-dimension VASS (Leroux & Sutre 2004)
- X Z<sup>n</sup> direct construction showing Presburger definability of reachability via Parikh images for 1-counter automata
- $M_0 * M_1$  when established for  $M_0$  and  $M_1$

**Goal**:  $M_0 * M_1$  is automatic when  $M_0$  and  $M_1$  are automatic

**Theorem** If M has automatic rational multiplication then M has an effectively automatic reachability structure.

**Goal**:  $M_0 * M_1$  is automatic when  $M_0$  and  $M_1$  are automatic

**Theorem** If M has automatic rational multiplication then M has an effectively automatic reachability structure.

 ${\cal M}$  has automatic rational multiplication if

- given a finite automaton representing  $R \subseteq M$
- we can compute a synchronous automaton representing

$$\mathbf{R}^{\odot} := \{(u, v) \in M \times M \mid \exists \mathbf{r} \in \mathbf{R} \colon u \odot \mathbf{r} = v\}$$

**Theorem** If M has automatic rational multiplication then M has an effectively automatic reachability structure.

 ${\cal M}$  has automatic rational multiplication if

- given a finite automaton representing  $R \subseteq M$
- we can compute a synchronous automaton representing

$$\mathbf{R}^{\odot} := \{(u, v) \in M \times M \mid \exists \mathbf{r} \in \mathbf{R} \colon u \odot \mathbf{r} = v\}$$













# Undecidability



# $\implies$ FO[R] is undecidable

# Undecidability



# Undecidability



20



We have two proofs:

We can prove undecidability without barred symbols:

- 1. Use *a* and *b* as in a stack without popping.
- 2. Use *c* in a counter never decrementing.
- There is a *fixed* FO[R]-formula that cannot be checked for valence systems over MΓ.

 There is a *fixed* valence system over MΓ with an undecidable first-order theory with reachability.



We have two proofs:

We can prove undecidability without barred symbols:

- 1. Use *a* and *b* as in a stack without popping.
- 2. Use *c* in a counter never decrementing.
- There is a *fixed* FO[R]-formula that cannot be checked for valence systems over MΓ.
  By reducing universality of rational subsets of {a, b}\* × {c}\* which is undecidable (Sakarovitch 1992)
- There is a *fixed* valence system over MΓ with an undecidable first-order theory with reachability.


We have two proofs:

We can prove undecidability without barred symbols:

- 1. Use *a* and *b* as in a stack without popping.
- 2. Use *c* in a counter never decrementing.
- There is a *fixed* FO[R]-formula that cannot be checked for valence systems over MΓ.
  By reducing universality of rational subsets of {a, b}\* × {c}\* which is undecidable (Sakarovitch 1992)
- There is a *fixed* valence system over MI with an undecidable first-order theory with reachability.
   By reducing a variant of PCP

## Undecidability

| Case 2: contains a $\mathbb{B}^2$ -triangle                                  |
|------------------------------------------------------------------------------|
| Submonoid $\mathbb{B}^2 	imes \mathbb{B}$ or $\mathbb{B}^2 	imes \mathbb{Z}$ |
| We can use                                                                   |
| the submonoid $\mathbb{B}^2	imes\mathbb{N}$                                  |

We can prove undecidability by using:

- 1. Two partially blind counters
- 2. A positive counter that we can only increment

The proof is by showing that there is a *fixed* valence automaton  $A_{\mathbb{N}}$  on which  $(\mathbb{N}, +, \cdot)$  can be interpreted:

- The  $\Sigma_1$  fragment of arithmetic with addition and multiplication is undecidable (Matiyasevich 1993)  $\implies \Sigma_2$  over  $\mathbb{M}\Gamma$  is undecidable.
- Key trick:
  - squaring is enough  $(a + b)^2 = a^2 + 2ab + b^2$
  - implement weak squaring by using  $n^2 = \sum_{i=0}^{n-1} 2i + 1$

## Conclusions



FO[R] for valence systems over  $M\Gamma$ is decidable

## Conclusions



As an application, undecidability of FO[R] on 3-dimension VASS is a special case.

## Thank you!