First-order logic with reachability for

infinite-state systems

Emanuele D’Osualdo’ Roland Meyer! Georg Zetzsche?

LUniversity of Kaiserslautern
2LSV, CNRS & ENS Cachan, Université Paris-Saclay

LICS 2016

Goal: decidability frontier of FO[R]

S4F @

Goal: decidability frontier of FO[R]

SAE ¢
K\/

Automaton:
finite control + storage

Goal: decidability frontier of FO[R]

Reachability structure:
infinite graph of configurations + —*

%
S4F @

K\J

Automaton:
finite control + storage

Goal: decidability frontier of FO[R]

Reachability structure:
infinite graph of configurations + —*

%
S4F @

N

Automaton: FO[R] first-order with reachability:
finite control + storage middle ground between FO and MSO

Goal: decidability frontier of FO[R]

Reachability structure:
infinite graph of configurations + —*

%
S4F @

N

Automaton: FO[R] first-order with reachability:
finite control + storage middle ground between FO and MSO
Decidable Undecidable
1-stack automata ? 2-stacks automata
2-dimension VASS VASS (aka Petri nets)

Key Question

Which features of storage mechanisms
determine the decidability of FO[R]?

Key Question
Which features of storage mechanisms
determine the decidability of FO[R]?
Main Result

We found a simple condition characterising
storage mechanisms with decidable FO[R].

Valence Automata

Finite control + Unbounded storage

Valence Automata

Finite control + Unbounded storage

~v v

q1

Configuration

q2

Valence Automata 4

Finite control + Unbounded storage

o <_/) (q0,m) — (ql,m/Qr)

Apply action

Valence Automata ¢

Finite control + Unbounded storage

% <_/) (go,m) — (q1,m®r)
/

Apply action

Storage = Monoid (M, ®,1)

® m,r € M set of storage contents and actions
® valid storage contents are the right-invertible elements:
meR(M)={zeM|IreM: z0r=1}

® 1 is empty storage and no-op action

Valence Automata >

Pushdown systems

G0)e—r’ (490, ba)

=3
=}
S]]

Stack = Monoid ({a, b, (‘1,5}* ,©,¢€)

® q,b are push actions, @, b are pop actions

Valence Automata >

Pushdown systems

b
q1
q0 (_/ (q()) bCL) — (C]l, ba ® 5()[))
o a
Apply action
q2

Stack = Monoid ({a, b, (‘1,5}* ,©,¢€)

® q,b are push actions, @, b are pop actions

Valence Automata >

Pushdown systems

w0)’ (q0,0a) — (g1, by © D)

=3
=}
S]]

Stack = Monoid ({a, b, (‘1,5}* ,©,¢€)

® q,b are push actions, @, b are pop actions

Valence Automata >

Pushdown systems

q0 (_/ ((JO,bCL) — (q1, bbb)

=3
=}
S]]

Stack = Monoid ({a, b, (‘1,5}* ,©,¢€)

® q,b are push actions, @, b are pop actions

Valence Automata >

Pushdown systems

abb
q1
q0 (_/ (q()) bCL) B (q1, bbb)
o a l
a2 (g0, bbb ® ba)

Stack = Monoid ({a, b, (‘1,5}* ,©,¢€)

® q,b are push actions, @, b are pop actions

Valence Automata >

Pushdown systems

q0 (_/ ((JO,bCL) — (q1, bbb)

=3
=
<l
“«—

q2 (QQ, bba)

Stack = Monoid ({a, b, (‘1,5}* ,©,¢€)

® q,b are push actions, @, b are pop actions

Valence Automata >

Pushdown systems

abb .
1
q0 (_/ (C_I(),ba) I (q1, bbb)
o a / l
o (g2, bbb © @) (g0, bba)

Stack = Monoid ({a, b, (‘1,5}* ,©,¢€)

® q,b are push actions, @, b are pop actions

® valid storage contents are the right-invertible elements:
R1(M) = {a,b}"

Valence Automata >

Pushdown systems

q0 (_/ (C_I(),ba) B (q1, bbb)

—
q2 (G=bbba] (q0, Dbba)

=3
=}
S]]

Stack = Monoid ({a, b, (‘1,5}* ,©,¢€)

® a,bare push actions, @, b are pop actions
® valid storage contents are the right-invertible elements:
R1(M) = {a,b}"

® ¢ is empty storage and no-op action

Graph monoids >

® GraphI'=(V,E)

Graph monoids °

® GraphI'=(V,E)
® Generators Xp = {ay,d, |v €V}

Graph monoids °

® GraphI'=(V,E)
® Generators Xp = {ay,d, |v €V}

Graph monoids >

® GraphI'=(V,E)
® Generators Xp = {ay,d, |v €V}
® Monoid generated by I' is MI' = X7./=

Graph monoids >

a ab = ba b
s ab =ba -7
’/’ ab = ba ‘_
a ab = ba b
atd =¢€ bb=¢

® GraphI'=(V,E)
® Generators Xp = {ay,d, |v €V}
® Monoid generated by I' is MI' = X7./=

Graph monoids >

a " ab =ba b
s ab =ba -7
. ab = ba ‘_
a ab = ba b
atd =¢€ bb=¢

® GraphI'=(V,E)
® Generators Xp = {ay,d, |v €V}
® Monoid generated by I' is MI' = X7./=

Examples of Graph Monoids !

A partially blind counter: B

Examples of Graph Monoids !

A partially blind counter: B

aaa

Examples of Graph Monoids !

A partially blind counter: B

Examples of Graph Monoids !

A partially blind counter: B

Examples of Graph Monoids !

A partially blind counter: B

Examples of Graph Monoids !

A partially blind counter: B

Examples of Graph Monoids !

A partially blind counter: B

Examples of Graph Monoids !

A partially blind counter: B

=aa

o
Q
=
U

|

Add@a = @ not right-invertible!

Can only represent positive integers

Examples of Graph Monoids °

A blind counter: Z

&

Examples of Graph Monoids °

A blind counter: Z

Examples of Graph Monoids

A blind counter: Z

a

’

aaa

Examples of Graph Monoids

A blind counter: Z

a

~

Examples of Graph Monoids °

A blind counter: Z

Examples of Graph Monoids °

A blind counter: Z

Examples of Graph Monoids °

A blind counter: Z

Examples of Graph Monoids °

A blind counter: Z

a ~
\\Daazaa
_ -
aa =¢
aadd = aa

=

U
S
I

= a now right-invertible!
(@a = aa = ¢)

Examples of Graph Monoids

A blind counter: Z

o
Q
=
U

|

=aa

=

U
S
Il

= a now right-invertible!
(@a = aa = ¢)

Can also represent negative integers

Examples of Graph Monoids ’

A stack of two symbols: B x B

Examples of Graph Monoids ’

A stack of two symbols: B x B

Examples of Graph Monoids ’

A stack of two symbols: B x B

aaab

Examples of Graph Monoids ’

A stack of two symbols: B x B

aaab - bab

Examples of Graph Monoids ’

A stack of two symbols: B x B

Examples of Graph Monoids ’

A stack of two symbols: B x B

aaappab = aaaab

Examples of Graph Monoids ’

A stack of two symbols: B x B

aaappab = aadib = aab

Examples of Graph Monoids

Examples of Graph Monoids

a ab = ba

. ab=ba

Lo ab = ba

a ab = ba
aa =€

Examples of Graph Monoids

a ab = ba

. ab=ba

Lo ab = ba

a ab = ba
aa =€

abaaba

Examples of Graph Monoids

a ab = ba

. ab=ba

Lo ab = ba

a ab = ba
aa =€

abaaab

Examples of Graph Monoids

a ab = ba

. ab=ba

Lo ab = ba

a ab = ba
aa =€

aabaab

Examples of Graph Monoids

a ab = ba

. ab=ba

Lo ab = ba

a ab = ba
aa =€

aaabab

Examples of Graph Monoids

a ab = ba

. ab=ba

Lo ab = ba

a ab = ba
aa =€

aaaabb

Examples of Graph Monoids

a ab = ba
. ab=ba _.°
Lo ab = ba Y

a ab = ba
ad =€ bb

Examples of Graph Monoids

a ab = ba

. ab=ba

Lo ab = ba

a ab = ba
aa =€

aaaabba

Examples of Graph Monoids

a ab = ba

. ab=ba

Lo ab = ba

a ab = ba
aa =€

aaaabab

Examples of Graph Monoids

a ab = ba

. ab=ba

Lo ab = ba

a ab = ba
aa =€

aaaaabb

Examples of Graph Monoids

a ab = ba

. ab=ba

Lo ab = ba

a ab = ba
aa =€

Examples of Graph Monoids

a ab = ba

. ab=ba

Lo ab = ba

a ab = ba
aa =€

aaabb

Examples of Graph Monoids

a ab = ba

. ab=ba

Lo ab = ba

a ab = ba
aa =€

aaabb - b

Examples of Graph Monoids

a ab = ba

. ab=ba

Lo ab = ba

a ab = ba
aa =€

Examples of Graph Monoids

Two partially blind counters: B x B

a ab = ba b
A ab = ba -7
2 ab = ba S
a ab =ba b
ad =€ bb=c¢

aaab

Direct product

This works in general: MI'y x MI'y = MI'y o:

® z

Direct product

This works in general: MI'y x MI'y = MI'y o:

® z

Direct product

This works in general: MI'y x MI'y = MI'y o:

7 x B

Direct product

This works in general: MI'y x MI'y = MI'y o:

Stackgy 7 x B

Direct product

This works in general: MI'y x MI'y = MI'y o:

Stackgy 7 x B

Direct product

This works in general: MI'y x MI'y = MI'y o:

Stacky, X Z x B

Free product

Free product: MII'y « MI'y = M(T'; W T's).

> <P

Free product

Free product: MII'y « MI'y = M(T'; W T's).

> <P

Free product

Free product: MII'y « MI'y = M(T'; W T's).

> <P

Free product

Free product: MII'y « MI'y = M(T'; W T's).

> <P

Free product

Free product: MII'y « MI'y = M(T'; W T's).

> <P

Free product

Free product: MII'y « MI'y = M(T'; W T's).

> <P

Free product

Free product: MII'y « MI'y = M(T'; W T's).

> <P

Free product

Free product: MII'y « MI'y = M(T'; W T's).

> <P

Free product

Free product: MII'y « MI'y = M(T'; W T's).

> <P

Graph monoids

B x B3

(BxB) x (B+B)

B2-triangles

B2 x B B2x7Z

Def A graph is B2-triangle-free if it does
not contain a B2-triangle as induced

subgraph.

Main Result

Theorem

FO[R] for valence systems over MI is decidable
if and only if

I is a disjoint union of B?-triangle-free cliques.

Characterisation of decidable cases

(.

I' is a disjoint union of
B2-triangle-free cliques

J

Allowed cliques:

Characterisation of decidable cases

(.

I' is a disjoint union of
B2-triangle-free cliques

J

Allowed cliques:

IBQ

Characterisation of decidable cases

(.

I' is a disjoint union of
B2-triangle-free cliques

J

Allowed cliques:

Characterisation of decidable cases

(.

I' is a disjoint union of
B2-triangle-free cliques

J

Allowed cliques:

Characterisation of decidable cases

(.

I' is a disjoint union of
B2-triangle-free cliques

J

Allowed cliques:

Characterisation of decidable cases

(.

I' is a disjoint union of
B2-triangle-free cliques

J

Allowed cliques:

— o .
IBQ
7 x 73
B x 73

Characterisation of decidable cases

(.

I' is a disjoint union of
B2-triangle-free cliques

J

Allowed cliques:

— o .
IBQ
7 x 7*
B x 7Z*

Characterisation of decidable cases

Allowed cliques:

I' is a disjoint union of '
B2-triangle-free cliques B2 v
- / Zx 7"
l B x z"

MI'y « My * - - - « MI', where I'; are cliques as above.

Operationally: Stack with as entries either

® 2 partially blind counters, or

® a partially blind counter with n blind counters.

Decidability

®® =—> FO[R] is decidable

Proof By showing automaticity of the reachability structure:
the step and reachability relations can be represented by
regular relations.

By (Khoussainov & Nerode 1995) the first-order theory of an
automatic structure is decidable.

Decidability !

®® =—> FO[R] is decidable

We show automaticity for the reachability structures over:

® B x B a consequence of Presburger definability of reachability
for 2-dimension VASS (Leroux & Sutre 2004)

® B x Z" direct construction showing Presburger definability of
reachability via Parikh images for 1-counter automata

® M, * My when established for My and M,

Decidability !

®® =—> FO[R] is decidable

We show automaticity for the reachability structures over:

® B x B a consequence of Presburger definability of reachability
for 2-dimension VASS (Leroux & Sutre 2004)

® B x Z" direct construction showing Presburger definability of
reachability via Parikh images for 1-counter automata

® My * M7 when established for My and M,

Decidability

Goal: My * Mj is automatic when M and M; are automatic

Theorem If M has automatic rational multiplication then M has
an effectively automatic reachability structure.

Decidability

Goal: My * Mj is automatic when M and M; are automatic

Theorem If M has automatic rational multiplication then M has
an effectively automatic reachability structure.
M has automatic rational multiplication if

® given a finite automaton representing R C M

® we can compute a synchronous automaton representing

RO :={(u,v)EM xM|Ir € R:u®r =v}

Decidability

Goal: My * My has aut. mult. when M, and M7 have aut. mult.

Theorem If M has automatic rational multiplication then M has
an effectively automatic reachability structure.
M has automatic rational multiplication if

® given a finite automaton representing R C M

® we can compute a synchronous automaton representing

RO :={(u,v)EM xM|Ir € R:u®r =v}

Decidability

Goal: My * My has aut. mult. when M, and M; have aut. mult.

Assume R C My * M is represented by finite automaton A.

€ER

[[] |
Y1 Y2 Y3

Decidability

Goal: My * My has aut. mult. when M, and M7 have aut. mult.

Assume R C My * M is represented by finite automaton A.

T2 Zs3 Y1 Y2 Ys 1 Zz 2y Y3

Decidability

Goal: My * My has aut. mult. when M, and M; have aut. mult.

Assume R C My * M is represented by finite automaton A.

=7 /7770077777 177072072777 3
VLR - 72277, 2 72770707777 <~y =
€L 220202022777 20022702777

x1 T2 Zs3 Y1 Y2 Ys 1 Zz 2y Y3

Decidability

Goal: My * My has aut. mult. when M, and M7 have aut. mult.

Assume R C My * M is represented by finite automaton A.

= /7770077777 AAAAAARAAA
VAR~ 7277, 2 22770707777 ~y
£ 220202022777 A

x1 T2 Zs3 Y1 Y2 Ys Zx 2y Y3

}GRQ

guessed

Decidability

®® =—> FO[R] is decidable

Undecidability

T" is not a disjoint union
of B2-triangle-free cliques

(.

J

20

—> FO[R] is undecidable

Undecidability -

> ; ,.>'<:: —> FO[R] is undecidable

T" is not a disjoint union

of B2-triangle-free cliques
(. J

N
()

Case 1: not all cliques

Submonoid {a, b}* x {c}*

(. J

Undecidability -

> ; ,.>'<:: —> FO[R] is undecidable

T" is not a disjoint union

of B2-triangle-free cliques
(. J
- ~N N p h 4 N
Case 1: not all cliques Case 2: contains a B2-triangle

/7\<~ Submonoid

B>xB or B2xZ
Submonoid {a, b}* x {c}*

(. J (. J

Undecidability

(A
Case 1: not all cliques We can prove undecidability without
.C barred symbols:
EAP 1. Use a and b as in a stack
R without popping.
Submonoid {a,b}* x {c}* 2. Use cin a counter never
L) decrementing.

We have two proofs:

® There is a fixed FO[R]-formula that cannot be checked for valence
systems over MI".

® There is a fixed valence system over MI" with an undecidable
first-order theory with reachability.

Undecidability

(.

Case 1: not all cliques

Submonoid {a,b}* x {c}*

J

We have two proofs:

We can prove undecidability without
barred symbols:

1. Use a and b as in a stack
without popping.

2. Use cin a counter never
decrementing.

® There is a fixed FO[R]-formula that cannot be checked for valence

systems over MI".

By reducing universality of rational subsets of {a,b}* x {c}* which
is undecidable (Sakarovitch 1992)

® There is a fixed valence system over MI" with an undecidable
first-order theory with reachability.

Undecidability

Case 1: not all cliques We can prove undecidability without
-.C barred symbols:

EAP 1. Use a and b as in a stack

without popping.

Submonoid {a,b}* x {c}* 2. Use cin a counter never
L) decrementing.

We have two proofs:

® There is a fixed FO[R]-formula that cannot be checked for valence
systems over MI".
By reducing universality of rational subsets of {a,b}* x {c}* which
is undecidable (Sakarovitch 1992)

® There is a fixed valence system over MI" with an undecidable
first-order theory with reachability.
By reducing a variant of PCP

Undecidability

Vs

(.

Case 2: contains a B2-triangle
Submonoid

B2xB or B2xZ

We can use
the submonoid B2 x N

N

J

We can prove undecidability by
using:

1. Two partially blind counters

2. A positive counter that we
can only increment

The proof is by showing that there is a fixed valence automaton Ay on
which (N, 4, -) can be interpreted:

® The X; fragment of arithmetic with addition and multiplication is
undecidable (Matiyasevich 1993) = X5 over MI is undecidable.

® Key trick:

- squaring is enough (a + b)? = a? + 2ab + b?
- implement weak squaring by using n? = Z?:_ol 21 +1

Conclusions

I' is a disjoint union of
B2-triangle-free cliques

(.

23

J

FO[R] for valence
systems over MI
is decidable

: 23
Conclusions

FO[R] for valence
@ systems over MI
I" is a disjoint union of is decidable

B2-triangle-free cliques

|\

(. J

As an application, undecidability of FO[R] on 3-dimension
VASS is a special case.

Thank you!

	Introduction
	Valence Automata
	Valence Automata
	Graph Monoids
	Result

	Decidability
	Undecidability
	Conclusions

