
First-order logic with reachability for
infinite-state systems

Emanuele D’Osualdo1 Roland Meyer1 Georg Zetzsche2

1University of Kaiserslautern
2LSV, CNRS & ENS Cachan, Université Paris-Saclay

LICS 2016



Goal: decidability frontier of FO[R] 2

SA |= ϕ

Automaton:
finite control + storage

Reachability structure:
infinite graph of configurations +→∗

FO[R] first-order with reachability:
middle ground between FO and MSO

Decidable
1-stack automata
2-dimension VASS

Undecidable
2-stacks automata

VASS (aka Petri nets)
?



Goal: decidability frontier of FO[R] 2

SA |= ϕ

Automaton:
finite control + storage

Reachability structure:
infinite graph of configurations +→∗

FO[R] first-order with reachability:
middle ground between FO and MSO

Decidable
1-stack automata
2-dimension VASS

Undecidable
2-stacks automata

VASS (aka Petri nets)
?



Goal: decidability frontier of FO[R] 2

SA |= ϕ

Automaton:
finite control + storage

Reachability structure:
infinite graph of configurations +→∗

FO[R] first-order with reachability:
middle ground between FO and MSO

Decidable
1-stack automata
2-dimension VASS

Undecidable
2-stacks automata

VASS (aka Petri nets)
?



Goal: decidability frontier of FO[R] 2

SA |= ϕ

Automaton:
finite control + storage

Reachability structure:
infinite graph of configurations +→∗

FO[R] first-order with reachability:
middle ground between FO and MSO

Decidable
1-stack automata
2-dimension VASS

Undecidable
2-stacks automata

VASS (aka Petri nets)
?



Goal: decidability frontier of FO[R] 2

SA |= ϕ

Automaton:
finite control + storage

Reachability structure:
infinite graph of configurations +→∗

FO[R] first-order with reachability:
middle ground between FO and MSO

Decidable
1-stack automata
2-dimension VASS

Undecidable
2-stacks automata

VASS (aka Petri nets)
?



Key �estion

Which features of storage mechanisms
determine the decidability of FO[R]?

Main Result

We found a simple condition characterising
storage mechanisms with decidable FO[R].



Key �estion

Which features of storage mechanisms
determine the decidability of FO[R]?

Main Result

We found a simple condition characterising
storage mechanisms with decidable FO[R].



Valence Automata 4

Finite control + Unbounded storage

q0

q1

q2

r

r′
r′′

(q0,m)

Configuration

(q1,m� r)

Apply action

Storage = Monoid (M,�,1)

m, r ∈M set of storage contents and actions

valid storage contents are the right-invertible elements:
m ∈ R1(M) := {x ∈M | ∃r ∈M : x� r = 1}

1 is empty storage and no-op action



Valence Automata 4

Finite control + Unbounded storage

q0

q1

q2

r

r′
r′′

(q0,m)

Configuration

(q1,m� r)

Apply action

Storage = Monoid (M,�,1)

m, r ∈M set of storage contents and actions

valid storage contents are the right-invertible elements:
m ∈ R1(M) := {x ∈M | ∃r ∈M : x� r = 1}

1 is empty storage and no-op action



Valence Automata 4

Finite control + Unbounded storage

q0

q1

q2

r

r′
r′′

(q0,m)

Configuration

(q1,m� r)

Apply action

Storage = Monoid (M,�,1)

m, r ∈M set of storage contents and actions

valid storage contents are the right-invertible elements:
m ∈ R1(M) := {x ∈M | ∃r ∈M : x� r = 1}

1 is empty storage and no-op action



Valence Automata 4

Finite control + Unbounded storage

q0

q1

q2

r

r′
r′′

(q0,m)

Configuration

(q1,m� r)

Apply action

Storage = Monoid (M,�,1)

m, r ∈M set of storage contents and actions

valid storage contents are the right-invertible elements:
m ∈ R1(M) := {x ∈M | ∃r ∈M : x� r = 1}

1 is empty storage and no-op action



Valence Automata 5

Pushdown systems

q0

q1

q2

abb

ba a

(q0, ba)

(q1,

bbbba� abbb6a�6abb

)

Apply action
(q0,

bbabbb� ba

)(q2,

bbbabbb� a

)

/

Stack = Monoid ({a, b, a, b}∗ ,�, ε)

a, b are push actions, a, b are pop actions

valid storage contents are the right-invertible elements:
R1(M) = {a, b}∗

ε is empty storage and no-op action



Valence Automata 5

Pushdown systems

q0

q1

q2

abb

ba a

(q0, ba) (q1,

bbb

ba� abb

b6a�6abb

)

Apply action

(q0,

bbabbb� ba

)(q2,

bbbabbb� a

)

/

Stack = Monoid ({a, b, a, b}∗ ,�, ε)

a, b are push actions, a, b are pop actions

valid storage contents are the right-invertible elements:
R1(M) = {a, b}∗

ε is empty storage and no-op action



Valence Automata 5

Pushdown systems

q0

q1

q2

abb

ba a

(q0, ba) (q1,

bbbba� abb

b6a�6abb)

Apply action
(q0,

bbabbb� ba

)(q2,

bbbabbb� a

)

/

Stack = Monoid ({a, b, a, b}∗ ,�, ε)

a, b are push actions, a, b are pop actions

valid storage contents are the right-invertible elements:
R1(M) = {a, b}∗

ε is empty storage and no-op action



Valence Automata 5

Pushdown systems

q0

q1

q2

abb

ba a

(q0, ba) (q1, bbb

ba� abbb6a�6abb

)

Apply action
(q0,

bbabbb� ba

)(q2,

bbbabbb� a

)

/

Stack = Monoid ({a, b, a, b}∗ ,�, ε)

a, b are push actions, a, b are pop actions

valid storage contents are the right-invertible elements:
R1(M) = {a, b}∗

ε is empty storage and no-op action



Valence Automata 5

Pushdown systems

q0

q1

q2

abb

ba a

(q0, ba) (q1, bbb

ba� abbb6a�6abb

)

Apply action

(q0,

bba

bbb� ba)

(q2,

bbbabbb� a

)

/

Stack = Monoid ({a, b, a, b}∗ ,�, ε)

a, b are push actions, a, b are pop actions

valid storage contents are the right-invertible elements:
R1(M) = {a, b}∗

ε is empty storage and no-op action



Valence Automata 5

Pushdown systems

q0

q1

q2

abb

ba a

(q0, ba) (q1, bbb

ba� abbb6a�6abb

)

Apply action

(q0, bba

bbb� ba

)

(q2,

bbbabbb� a

)

/

Stack = Monoid ({a, b, a, b}∗ ,�, ε)

a, b are push actions, a, b are pop actions

valid storage contents are the right-invertible elements:
R1(M) = {a, b}∗

ε is empty storage and no-op action



Valence Automata 5

Pushdown systems

q0

q1

q2

abb

ba a

(q0, ba) (q1, bbb

ba� abbb6a�6abb

)

Apply action

(q0, bba

bbb� ba

)(q2,

bbba

bbb� a)

/

Stack = Monoid ({a, b, a, b}∗ ,�, ε)

a, b are push actions, a, b are pop actions

valid storage contents are the right-invertible elements:
R1(M) = {a, b}∗

ε is empty storage and no-op action



Valence Automata 5

Pushdown systems

q0

q1

q2

abb

ba a

(q0, ba) (q1, bbb

ba� abbb6a�6abb

)

Apply action

(q0, bba

bbb� ba

)(q2, bbba

bbb� a

)

/

Stack = Monoid ({a, b, a, b}∗ ,�, ε)

a, b are push actions, a, b are pop actions

valid storage contents are the right-invertible elements:
R1(M) = {a, b}∗

ε is empty storage and no-op action



Graph monoids 6

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

aa ≡ aa

Graph Γ = (V,E)

Generators XΓ = {av, av | v ∈ V }
Monoid generated by Γ is MΓ = X∗

Γ/≡



Graph monoids 6

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

aa ≡ aa

Graph Γ = (V,E)

Generators XΓ = {av, av | v ∈ V }

Monoid generated by Γ is MΓ = X∗
Γ/≡



Graph monoids 6

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

aa ≡ aa

Graph Γ = (V,E)

Generators XΓ = {av, av | v ∈ V }

Monoid generated by Γ is MΓ = X∗
Γ/≡



Graph monoids 6

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

aa ≡ aa

Graph Γ = (V,E)

Generators XΓ = {av, av | v ∈ V }
Monoid generated by Γ is MΓ = X∗

Γ/≡



Graph monoids 6

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

aa ≡ aa

Graph Γ = (V,E)

Generators XΓ = {av, av | v ∈ V }
Monoid generated by Γ is MΓ = X∗

Γ/≡



Graph monoids 6

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

aa ≡ aa

Graph Γ = (V,E)

Generators XΓ = {av, av | v ∈ V }
Monoid generated by Γ is MΓ = X∗

Γ/≡



Examples of Graph Monoids 7

A partially blind counter: B

a

a

aa ≡ ε

aaaa ≡ aa

aaa ≡ a not right-invertible!

Can only represent positive integers



Examples of Graph Monoids 7

A partially blind counter: B

a

a

aa ≡ ε

aaa

6a ≡ aa

a6aa ≡ a not right-invertible!

Can only represent positive integers



Examples of Graph Monoids 7

A partially blind counter: B

a

a

aa ≡ ε

aaa · a

6a ≡ aa

a6aa ≡ a not right-invertible!

Can only represent positive integers



Examples of Graph Monoids 7

A partially blind counter: B

a

a

aa ≡ ε

aa6a6a

≡ aa

a6aa ≡ a not right-invertible!

Can only represent positive integers



Examples of Graph Monoids 7

A partially blind counter: B

a

a

aa ≡ ε

aa6a6a ≡ aa

a

6aa ≡ a not right-invertible!

Can only represent positive integers



Examples of Graph Monoids 7

A partially blind counter: B

a

a

aa ≡ ε

aa6a6a ≡ aa

a · aa

6aa ≡ a not right-invertible!

Can only represent positive integers



Examples of Graph Monoids 7

A partially blind counter: B

a

a

aa ≡ ε

aa6a6a ≡ aa

6a6aa

≡ a not right-invertible!

Can only represent positive integers



Examples of Graph Monoids 7

A partially blind counter: B

a

a

aa ≡ ε

aa6a6a ≡ aa

6a6aa ≡ a not right-invertible!

Can only represent positive integers



Examples of Graph Monoids 8

A blind counter: Z

a

a

aa ≡ ε

aa ≡ aa

aaaa ≡ aa

aaa ≡ a now right-invertible!
(aa ≡ aa ≡ ε)

Can also represent negative integers



Examples of Graph Monoids 8

A blind counter: Z

a

a

aa ≡ ε

aa ≡ aa

aaa6a ≡ aa

a6aa ≡ a now right-invertible!
(aa ≡ aa ≡ ε)

Can also represent negative integers



Examples of Graph Monoids 8

A blind counter: Z

a

a

aa ≡ ε

aa ≡ aa

aaa

6a ≡ aa

a6aa ≡ a now right-invertible!
(aa ≡ aa ≡ ε)

Can also represent negative integers



Examples of Graph Monoids 8

A blind counter: Z

a

a

aa ≡ ε

aa ≡ aa

aaa · a

6a ≡ aa

a6aa ≡ a now right-invertible!
(aa ≡ aa ≡ ε)

Can also represent negative integers



Examples of Graph Monoids 8

A blind counter: Z

a

a

aa ≡ ε

aa ≡ aa

aa6a6a ≡ aa

a6aa ≡ a now right-invertible!
(aa ≡ aa ≡ ε)

Can also represent negative integers



Examples of Graph Monoids 8

A blind counter: Z

a

a

aa ≡ ε

aa ≡ aa

aa6a6a ≡ aa

a

6aa ≡ a now right-invertible!
(aa ≡ aa ≡ ε)

Can also represent negative integers



Examples of Graph Monoids 8

A blind counter: Z

a

a

aa ≡ ε

aa ≡ aa

aa6a6a ≡ aa

a · aa

6aa ≡ a now right-invertible!
(aa ≡ aa ≡ ε)

Can also represent negative integers



Examples of Graph Monoids 8

A blind counter: Z

a

a

aa ≡ ε

aa ≡ aa

aa6a6a ≡ aa

6a6aa ≡ a now right-invertible!
(aa ≡ aa ≡ ε)

Can also represent negative integers



Examples of Graph Monoids 8

A blind counter: Z

a

a

aa ≡ ε

aa ≡ aa

aa6a6a ≡ aa

6a6aa ≡ a now right-invertible!
(aa ≡ aa ≡ ε)

Can also represent negative integers



Examples of Graph Monoids 9

A stack of two symbols: B ∗ B

a

a

aa ≡ ε

b

b

bb ≡ ε

aaabbab ≡ aaaab ≡ aab



Examples of Graph Monoids 9

A stack of two symbols: B ∗ B

a

a

aa ≡ ε

b

b

bb ≡ ε

aaab6 bab ≡ aaaab ≡ aab



Examples of Graph Monoids 9

A stack of two symbols: B ∗ B

a

a

aa ≡ ε

b

b

bb ≡ ε

aaab

6 bab ≡ aaaab ≡ aab



Examples of Graph Monoids 9

A stack of two symbols: B ∗ B

a

a

aa ≡ ε

b

b

bb ≡ ε

aaab · bab

6 bab ≡ aaaab ≡ aab



Examples of Graph Monoids 9

A stack of two symbols: B ∗ B

a

a

aa ≡ ε

b

b

bb ≡ ε

aaa6 b6 bab

≡ aaaab ≡ aab



Examples of Graph Monoids 9

A stack of two symbols: B ∗ B

a

a

aa ≡ ε

b

b

bb ≡ ε

aaa6 b6 bab ≡ aaaab

≡ aab



Examples of Graph Monoids 9

A stack of two symbols: B ∗ B

a

a

aa ≡ ε

b

b

bb ≡ ε

aaa6 b6 bab ≡ aa6a6ab ≡ aab



Examples of Graph Monoids 10

Two partially blind counters: B× B

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba



Examples of Graph Monoids 10

Two partially blind counters: B× B

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba



Examples of Graph Monoids 10

Two partially blind counters: B× B

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

abaaba



Examples of Graph Monoids 10

Two partially blind counters: B× B

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

abaaab



Examples of Graph Monoids 10

Two partially blind counters: B× B

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

aabaab



Examples of Graph Monoids 10

Two partially blind counters: B× B

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

aaabab



Examples of Graph Monoids 10

Two partially blind counters: B× B

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

aaaabb



Examples of Graph Monoids 10

Two partially blind counters: B× B

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

aaaabb · a



Examples of Graph Monoids 10

Two partially blind counters: B× B

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

aaaabba



Examples of Graph Monoids 10

Two partially blind counters: B× B

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

aaaabab



Examples of Graph Monoids 10

Two partially blind counters: B× B

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

aaaaabb



Examples of Graph Monoids 10

Two partially blind counters: B× B

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

aaa6a6abb



Examples of Graph Monoids 10

Two partially blind counters: B× B

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

aaabb



Examples of Graph Monoids 10

Two partially blind counters: B× B

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

aaabb · b



Examples of Graph Monoids 10

Two partially blind counters: B× B

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

aaab6 b6 b



Examples of Graph Monoids 10

Two partially blind counters: B× B

a

a

aa ≡ ε

b

b

bb ≡ ε

ab ≡ ba

ab ≡ ba

ab ≡ ba

ab ≡ ba

aaab



Direct product 11

This works in general: MΓ1 ×MΓ2 = MΓ1,2:

Z

B

Z× BStackab × Z× BStackab



Direct product 11

This works in general: MΓ1 ×MΓ2 = MΓ1,2:

Z

B

Z× BStackab × Z× BStackab



Direct product 11

This works in general: MΓ1 ×MΓ2 = MΓ1,2:

Z

B

Z× B

Stackab × Z× BStackab



Direct product 11

This works in general: MΓ1 ×MΓ2 = MΓ1,2:

Z

B

Z× B

Stackab × Z× B

Stackab



Direct product 11

This works in general: MΓ1 ×MΓ2 = MΓ1,2:

Z

B

Z× B

Stackab × Z× B

Stackab



Direct product 11

This works in general: MΓ1 ×MΓ2 = MΓ1,2:

Z

B

Z× B

Stackab × Z× B

Stackab



Free product 12

Free product: MΓ1 ∗MΓ2 = M(Γ1 ] Γ2).



Free product 12

Free product: MΓ1 ∗MΓ2 = M(Γ1 ] Γ2).

·



Free product 12

Free product: MΓ1 ∗MΓ2 = M(Γ1 ] Γ2).



Free product 12

Free product: MΓ1 ∗MΓ2 = M(Γ1 ] Γ2).

·



Free product 12

Free product: MΓ1 ∗MΓ2 = M(Γ1 ] Γ2).



Free product 12

Free product: MΓ1 ∗MΓ2 = M(Γ1 ] Γ2).



Free product 12

Free product: MΓ1 ∗MΓ2 = M(Γ1 ] Γ2).

·



Free product 12

Free product: MΓ1 ∗MΓ2 = M(Γ1 ] Γ2).



Free product 12

Free product: MΓ1 ∗MΓ2 = M(Γ1 ] Γ2).



Graph monoids 13

Z3 (B ∗ B)× B3

B ∗ B3 (B ∗ B)× (B ∗ B)



B2-triangles 14

B2 × B B2 × Z

Def A graph is B2-triangle-free if it does
not contain a B2-triangle as induced
subgraph.



Main Result 15

Theorem

FO[R] for valence systems over MΓ is decidable

if and only if

Γ is a disjoint union of B2-triangle-free cliques.



Characterisation of decidable cases 16

Γ is a disjoint union of
B2-triangle-free cliques

MΓ1 ∗MΓ2 ∗ · · · ∗MΓk where Γi are cliques as above.

Allowed cliques:

B2

Operationally: Stack with as entries either

2 partially blind counters, or
a partially blind counter with n blind counters.



Characterisation of decidable cases 16

Γ is a disjoint union of
B2-triangle-free cliques

MΓ1 ∗MΓ2 ∗ · · · ∗MΓk where Γi are cliques as above.

Allowed cliques:

B2

Operationally: Stack with as entries either

2 partially blind counters, or
a partially blind counter with n blind counters.



Characterisation of decidable cases 16

Γ is a disjoint union of
B2-triangle-free cliques

MΓ1 ∗MΓ2 ∗ · · · ∗MΓk where Γi are cliques as above.

Allowed cliques:

B2

Z
B

Operationally: Stack with as entries either

2 partially blind counters, or
a partially blind counter with n blind counters.



Characterisation of decidable cases 16

Γ is a disjoint union of
B2-triangle-free cliques

MΓ1 ∗MΓ2 ∗ · · · ∗MΓk where Γi are cliques as above.

Allowed cliques:

B2

Z× Z
B× Z

Operationally: Stack with as entries either

2 partially blind counters, or
a partially blind counter with n blind counters.



Characterisation of decidable cases 16

Γ is a disjoint union of
B2-triangle-free cliques

MΓ1 ∗MΓ2 ∗ · · · ∗MΓk where Γi are cliques as above.

Allowed cliques:

B2

Z× Z2

B× Z2

Operationally: Stack with as entries either

2 partially blind counters, or
a partially blind counter with n blind counters.



Characterisation of decidable cases 16

Γ is a disjoint union of
B2-triangle-free cliques

MΓ1 ∗MΓ2 ∗ · · · ∗MΓk where Γi are cliques as above.

Allowed cliques:

B2

Z× Z3

B× Z3

Operationally: Stack with as entries either

2 partially blind counters, or
a partially blind counter with n blind counters.



Characterisation of decidable cases 16

Γ is a disjoint union of
B2-triangle-free cliques

MΓ1 ∗MΓ2 ∗ · · · ∗MΓk where Γi are cliques as above.

Allowed cliques:

B2

Z× Z4

B× Z4

Operationally: Stack with as entries either

2 partially blind counters, or
a partially blind counter with n blind counters.



Characterisation of decidable cases 16

Γ is a disjoint union of
B2-triangle-free cliques

MΓ1 ∗MΓ2 ∗ · · · ∗MΓk where Γi are cliques as above.

Allowed cliques:

B2

Z× Zn

B× Zn

. . .

Operationally: Stack with as entries either

2 partially blind counters, or
a partially blind counter with n blind counters.



Decidability 17

=⇒ FO[R] is decidable

Proof By showing automaticity of the reachability structure:
the step and reachability relations can be represented by
regular relations.

By (Khoussainov & Nerode 1995) the first-order theory of an
automatic structure is decidable.



Decidability 17

=⇒ FO[R] is decidable

We show automaticity for the reachability structures over:

B× B a consequence of Presburger definability of reachability
for 2-dimension VASS (Leroux & Sutre 2004)

B× Zn direct construction showing Presburger definability of
reachability via Parikh images for 1-counter automata

M0 ∗M1 when established for M0 and M1



Decidability 17

=⇒ FO[R] is decidable

We show automaticity for the reachability structures over:

B× B a consequence of Presburger definability of reachability
for 2-dimension VASS (Leroux & Sutre 2004)

B× Zn direct construction showing Presburger definability of
reachability via Parikh images for 1-counter automata

M0 ∗M1 when established for M0 and M1



Decidability 18

Goal: M0 ∗M1 is automatic when M0 and M1 are automatic

Theorem If M has automatic rational multiplication then M has
an e�ectively automatic reachability structure.



Decidability 18

Goal: M0 ∗M1 is automatic when M0 and M1 are automatic

Theorem If M has automatic rational multiplication then M has
an e�ectively automatic reachability structure.

M has automatic rational multiplication if

given a finite automaton representing R ⊆M

we can compute a synchronous automaton representing

R� := {(u, v) ∈M ×M | ∃r ∈ R : u� r = v}



Decidability 18

Goal: M0 ∗M1 has aut. mult. when M0 and M1 have aut. mult.

Theorem If M has automatic rational multiplication then M has
an e�ectively automatic reachability structure.

M has automatic rational multiplication if

given a finite automaton representing R ⊆M

we can compute a synchronous automaton representing

R� := {(u, v) ∈M ×M | ∃r ∈ R : u� r = v}



Decidability 18

Goal: M0 ∗M1 has aut. mult. when M0 and M1 have aut. mult.

Assume R ⊆M0 ∗M1 is represented by finite automaton A.

x1 x2 x3

·
y1 y2 y3

=
x1 zx zy y3

zx zy

x1 x2 x3

x1 zx zy y3
∈ R�

guessed

∈ R



Decidability 18

Goal: M0 ∗M1 has aut. mult. when M0 and M1 have aut. mult.

Assume R ⊆M0 ∗M1 is represented by finite automaton A.

x1 x2 x3

·
y1 y2 y3

=
x1 zx zy y3

zx zy

x1 x2 x3

x1 zx zy y3
∈ R�

guessed

∈ R



Decidability 18

Goal: M0 ∗M1 has aut. mult. when M0 and M1 have aut. mult.

Assume R ⊆M0 ∗M1 is represented by finite automaton A.

x1 x2 x3

·
y1 y2 y3

=
x1 zx zy y3

zx zy

x1 x2 x3

x1 zx zy y3
∈ R�

guessed

∈ R



Decidability 18

Goal: M0 ∗M1 has aut. mult. when M0 and M1 have aut. mult.

Assume R ⊆M0 ∗M1 is represented by finite automaton A.

x1 x2 x3

·
y1 y2 y3

=
x1 zx zy y3

zx zy

x1 x2 x3

x1 zx zy y3
∈ R�

guessed

∈ R



Decidability 19

=⇒ FO[R] is decidable



Undecidability 20

Γ is not a disjoint union
of B2-triangle-free cliques

Case 1: not all cliques

Submonoid {a, b}∗ × {c}∗

Case 2: contains a B2-triangle

Submonoid
B2 × B or B2 × Z

=⇒ FO[R] is undecidable



Undecidability 20

Γ is not a disjoint union
of B2-triangle-free cliques

Case 1: not all cliques

Submonoid {a, b}∗ × {c}∗

Case 2: contains a B2-triangle

Submonoid
B2 × B or B2 × Z

=⇒ FO[R] is undecidable



Undecidability 20

Γ is not a disjoint union
of B2-triangle-free cliques

Case 1: not all cliques

Submonoid {a, b}∗ × {c}∗

Case 2: contains a B2-triangle

Submonoid
B2 × B or B2 × Z

=⇒ FO[R] is undecidable



Undecidability 21

Case 1: not all cliques
c

ba

Submonoid {a, b}∗ × {c}∗

We can prove undecidability without
barred symbols:

1. Use a and b as in a stack
without popping.

2. Use c in a counter never
decrementing.

We have two proofs:

There is a fixed FO[R]-formula that cannot be checked for valence
systems over MΓ.

By reducing universality of rational subsets of {a, b}∗ × {c}∗ which
is undecidable (Sakarovitch 1992)

There is a fixed valence system over MΓ with an undecidable
first-order theory with reachability.

By reducing a variant of PCP



Undecidability 21

Case 1: not all cliques
c

ba

Submonoid {a, b}∗ × {c}∗

We can prove undecidability without
barred symbols:

1. Use a and b as in a stack
without popping.

2. Use c in a counter never
decrementing.

We have two proofs:

There is a fixed FO[R]-formula that cannot be checked for valence
systems over MΓ.
By reducing universality of rational subsets of {a, b}∗ × {c}∗ which
is undecidable (Sakarovitch 1992)

There is a fixed valence system over MΓ with an undecidable
first-order theory with reachability.

By reducing a variant of PCP



Undecidability 21

Case 1: not all cliques
c

ba

Submonoid {a, b}∗ × {c}∗

We can prove undecidability without
barred symbols:

1. Use a and b as in a stack
without popping.

2. Use c in a counter never
decrementing.

We have two proofs:

There is a fixed FO[R]-formula that cannot be checked for valence
systems over MΓ.
By reducing universality of rational subsets of {a, b}∗ × {c}∗ which
is undecidable (Sakarovitch 1992)

There is a fixed valence system over MΓ with an undecidable
first-order theory with reachability.
By reducing a variant of PCP



Undecidability 22

Case 2: contains a B2-triangle

Submonoid
B2 × B or B2 × Z

We can use
the submonoid B2 × N

We can prove undecidability by
using:

1. Two partially blind counters

2. A positive counter that we
can only increment

The proof is by showing that there is a fixed valence automaton AN on
which (N,+, ·) can be interpreted:

The Σ1 fragment of arithmetic with addition and multiplication is
undecidable (Matiyasevich 1993) =⇒ Σ2 over MΓ is undecidable.

Key trick:

• squaring is enough (a + b)2 = a2 + 2ab + b2

• implement weak squaring by using n2 =
∑n−1

i=0 2i + 1



Conclusions 23

Γ is a disjoint union of
B2-triangle-free cliques

i�
FO[R] for valence
systems over MΓ

is decidable

As an application, undecidability of FO[R] on 3-dimension
VASS is a special case.



Conclusions 23

Γ is a disjoint union of
B2-triangle-free cliques

i�
FO[R] for valence
systems over MΓ

is decidable

As an application, undecidability of FO[R] on 3-dimension
VASS is a special case.



Thank you!


	Introduction
	Valence Automata
	Valence Automata
	Graph Monoids
	Result

	Decidability
	Undecidability
	Conclusions

