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Automaton: FO[R] first-order with reachability:
finite control + storage middle ground between FO and MSO
Decidable Undecidable
1-stack automata ? 2-stacks automata
2-dimension VASS VASS (aka Petri nets)
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Key Question
Which features of storage mechanisms
determine the decidability of FO[R]?
Main Result

We found a simple condition characterising
storage mechanisms with decidable FO[R].



Valence Automata

Finite control + Unbounded storage



Valence Automata

Finite control + Unbounded storage

~v v

q1

Configuration

q2



Valence Automata 4

Finite control + Unbounded storage

o <_/) (q0,m) — (ql,m/Qr)

Apply action



Valence Automata ¢

Finite control + Unbounded storage

% <_/) (go,m) — (q1,m®r)
/

Apply action

Storage = Monoid (M, ®,1)

® m,r € M set of storage contents and actions
® valid storage contents are the right-invertible elements:
meR(M)={zeM|IreM: z0r=1}

® 1 is empty storage and no-op action
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Pushdown systems
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Stack = Monoid ({a, b, (‘1,5}* ,©,¢€)

® a,bare push actions, @, b are pop actions
® valid storage contents are the right-invertible elements:
R1(M) = {a,b}"

® ¢ is empty storage and no-op action
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Can only represent positive integers
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Examples of Graph Monoids

A blind counter: Z
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= a  now right-invertible!
(@a = aa = ¢)

Can also represent negative integers
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A stack of two symbols: B x B
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Examples of Graph Monoids

Two partially blind counters: B x B

a ab = ba b
A ab = ba -7
2 ab = ba S
a ab =ba b
ad =€ bb=c¢

aaab
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Free product

Free product: MII'y « MI'y = M(T'; W T's).
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Graph monoids

B x B3

(BxB) x (B+B)



B2-triangles

B2 x B B2x7Z

Def A graph is B2-triangle-free if it does
not contain a B2-triangle as induced

subgraph.



Main Result

Theorem

FO[R] for valence systems over MI is decidable
if and only if

I is a disjoint union of B?-triangle-free cliques.
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Characterisation of decidable cases

Allowed cliques:

I' is a disjoint union of '
B2-triangle-free cliques B2 v
- / Zx 7"
l B x z"

MI'y « My * - - - « MI', where I'; are cliques as above.

Operationally: Stack with as entries either

® 2 partially blind counters, or

® a partially blind counter with n blind counters.



Decidability

®® =—> FO[R] is decidable

Proof By showing automaticity of the reachability structure:
the step and reachability relations can be represented by
regular relations.

By (Khoussainov & Nerode 1995) the first-order theory of an
automatic structure is decidable.
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Goal: My * My has aut. mult. when M, and M; have aut. mult.

Assume R C My * M is represented by finite automaton A.
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Decidability

Goal: My * My has aut. mult. when M, and M7 have aut. mult.

Assume R C My * M is represented by finite automaton A.

= /7770077777 AAAAAARAAA
VAR~ 7277, 2 22770707777 ~y
£ 220202022777 A

x1 T2 Zs3 Y1 Y2 Ys Zx 2y Y3

}GRQ

guessed
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Case 1: not all cliques Case 2: contains a B2-triangle
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Undecidability
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.C barred symbols:
EAP 1. Use a and b as in a stack
R without popping.
Submonoid {a,b}* x {c}* 2. Use cin a counter never
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We have two proofs:

® There is a fixed FO[R]-formula that cannot be checked for valence
systems over MI".

® There is a fixed valence system over MI" with an undecidable
first-order theory with reachability.
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Undecidability

Case 1: not all cliques We can prove undecidability without
-.C barred symbols:

EAP 1. Use a and b as in a stack

without popping.

Submonoid {a,b}* x {c}* 2. Use cin a counter never
L ) decrementing.

We have two proofs:

® There is a fixed FO[R]-formula that cannot be checked for valence
systems over MI".
By reducing universality of rational subsets of {a,b}* x {c}* which
is undecidable (Sakarovitch 1992)

® There is a fixed valence system over MI" with an undecidable
first-order theory with reachability.
By reducing a variant of PCP



Undecidability
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Case 2: contains a B2-triangle
Submonoid

B2xB or B2xZ

We can use
the submonoid B2 x N

N

J

We can prove undecidability by
using:

1. Two partially blind counters

2. A positive counter that we
can only increment

The proof is by showing that there is a fixed valence automaton Ay on
which (N, 4, -) can be interpreted:

® The X; fragment of arithmetic with addition and multiplication is
undecidable (Matiyasevich 1993) = X5 over MI is undecidable.

® Key trick:

- squaring is enough (a + b)? = a? + 2ab + b?
- implement weak squaring by using n? = Z?:_ol 21 +1



Conclusions

I' is a disjoint union of
B2-triangle-free cliques
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FO[R] for valence
systems over MI
is decidable
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Conclusions

FO[R] for valence
@ systems over MI
I" is a disjoint union of is decidable

B2-triangle-free cliques

|\

(. J

As an application, undecidability of FO[R] on 3-dimension
VASS is a special case.



Thank you!
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